Fibers of Spec maps

For $P \subseteq R$ a prime ideal, define the <u>residue field</u> of P to be $k(P) := \frac{R_P}{PR_P} = \frac{(R_P)}{P} = K(R_P)$

<u>Remark</u>: The second equality holds because localization commutes w/ taking quotients, since it is flat:

IF NEM, then localizing

$$\circ \to \mathsf{N} \to \mathsf{M} \to \mathsf{M}'_{\mathsf{N}} \to \mathsf{O}$$

we get the SES $0 \rightarrow N_{p} \rightarrow M_{p} \rightarrow (M_{N})_{p} \rightarrow 0$ $\Rightarrow M_{p} \swarrow (M_{N})_{p} \simeq (M_{N})_{p}.$

There is a canonical map $R \rightarrow k(P)$ given by $R \rightarrow R_{p} \rightarrow \frac{R_{p}}{(PR_{p})} = k(P)$

What is the induced map on Spec?

Spec
$$k(P) = \{(o)\}$$
, and the kernel of $R \rightarrow k(P)$ is P.
So $\{(o)\} \rightarrow P$.

Theorem: let Y: R -> S be a ring map and

 $f: \operatorname{Spec} S \longrightarrow \operatorname{Spec} R$ the induced map on spec. For each PESpecR, there is a natural bijection between the fiber $f^{-1}(P) \subseteq \operatorname{Spec} S$ and $\operatorname{Spec}(k(P) \otimes_R S)$.

Pf: First note that
$$f^{-1}(P) = \{Q \in S_{Pec}S \mid Y^{-1}(Q) = P\}$$
.

Let $U = \mathcal{Y}(R \setminus P) \subseteq S$. U is a multiplicative set since $R \setminus P$ is: $\mathcal{Y}(a) \mathcal{Y}(b) = \mathcal{Y}(ab)$.

Recall that we have the following homeomorphism:

$$Spec(U^{-1}S) \longrightarrow \{ Q \in Spe \in S \mid Q \cap U = \phi \}$$

 $Q(U^{-1}S) \longleftarrow Q$

Notice: $Q \cap U = \emptyset \iff \Psi^{-1}(Q) \subseteq P$, so $f^{-1}(P)$ is contained in

For $Q \in f^{-1}(P)$, we need $P \subseteq \varphi^{-1}(Q)$ as well.

- $P \subseteq \varphi^{-1}(Q) \iff \varphi(P) \subseteq Q \iff PS \subseteq Q \iff P(u^{-1}S) \subseteq Q(u^{-1}S)$ so $f^{-1}(P) \cong V(P(u^{-1}S)) \subseteq Spec(u^{-1}S)$. Which is homeomorphic to $Spec(u^{-1}S/Pu^{-1}S)$.
- Thus, we just need u-'s/puis = Rp/pRp & S

We know that $\operatorname{Rp} \otimes_{R} S \to U^{-1}S$ is an isomorphism. Tensoring the SES $0 \to PR_{p} \longrightarrow R_{p} \longrightarrow R_{p} / \rho R_{p} \longrightarrow O$ yields $PR_{p} \otimes S \xrightarrow{d} R_{p} \otimes S \longrightarrow \xrightarrow{R_{p}} \rho R_{p} \otimes S \longrightarrow O$ 112 $U^{-1}S$

The image of α is generated by elts of the form $\frac{P}{V} \otimes s$, for $p \in P$, $V \notin P$, $s \in S$.

Mese correspond to elts of U⁻¹S of the form
$$\frac{\varphi(p)S}{u}$$
,
Where $u \in \varphi(R \setminus P) = U$, which generate $PU^{-1}S$.

Thus, we get desired isomorphism. D

So we now have a nice way to describe fibers.

Ex: If $C[x] \hookrightarrow C[x,y]$ is the inclusion, and fthe induced map on Spec, what does the fiber over Pespec C[x] look like?

$$|f P = (x - a), \quad k(P) = \begin{pmatrix} C[x]_{P} & P_{P} \end{pmatrix} \subseteq C[x] \\ (x - a) \end{pmatrix}$$

5.
$$\mathbb{C}[x,y] \otimes_{\mathbb{C}[x]} k(\mathbb{P}) \stackrel{\sim}{=} \mathbb{C}[x,y] \otimes_{\mathbb{C}[x]} \mathbb{C}[x]$$

 $\stackrel{\cong}{=} \mathbb{C}[y]$
If $\mathbb{P}=(0)$, $k(0) = \frac{\mathbb{C}[x](0)}{(0)} = \text{field of fractions of}$
So $\mathbb{C}[x,y] \otimes_{\mathbb{C}[x]} k(0)$
 $\stackrel{\cong}{=} \mathbb{C}(x)[y]$
 $\stackrel{\text{field of fractions}}{\stackrel{\text{fractions}}{=} \text{of } \mathbb{C}[x]}$

Ex: Consider
$$\varphi: \mathbb{C}[x] \longrightarrow \mathbb{C}[x,y]/(y^2-x)$$
, The inclusion,

Then if
$$P = (x - a)$$
, we have
 $C[x,y]_{(y^2-x)} \otimes C[x] \qquad C[x]_{(x-a)}$
 $\cong C[x,y]_{(y^2-x, x-a)} \cong C[y]_{(y^2-a)}$
Spec $C[y]_{(y^2-a)} = \{(y-a), (y+a)\}$ if $a \neq 0$
or $\{(y)\}$ if $a = 0$.
If $P = (0)$,

$$\mathbb{C}\left[x,y\right]\left(y^{2}-x\right)\otimes_{\mathbb{C}\left[x\right]}\mathbb{C}\left[x\right]\left(y\right)$$

The only prime ideal in C[x,y] that contains $(y^2 - x)$ but doesn't meet C[x] is $(y^2 - x)$ itself.

so spec of this ring is a single point.

Ex: f. spec
$$\mathbb{Q} \to \text{Spec } \mathcal{R}$$
 has fiber over (0):
 $Spec\left(\begin{array}{c} \mathbb{Q} \otimes_{\mathcal{R}} \mathcal{R}_{(0)} \\ \mathbb{Q} \end{array}\right) = \text{one point}$
 \mathbb{Q}
 $Over (P), \text{ spec } \left(\begin{array}{c} \mathbb{Q} \otimes \mathcal{R}_{(p)} \\ \mathbb{Q} \end{array}\right) = \emptyset.$