Fibers of Spec maps

For $P \subseteq R$ a prime ideal, define the residue field of P to be

$$
k(P):=R_{P} / P R_{P}=(R / P)_{P}=K(R / P)
$$

Remark: The second equality holds because localization commutes $w /$ taking quotients, since it is flat:

If $N \subseteq M$, then localizing

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

we get the SES

$$
\begin{aligned}
0 \rightarrow N_{p} & \rightarrow M_{p} \rightarrow(M / N)_{p} \rightarrow 0 \\
\Rightarrow M_{p} / N_{p} & \cong(M / N)_{p} .
\end{aligned}
$$

There is a canonical map $R \rightarrow k(P)$ given by

$$
R \rightarrow R_{p} \rightarrow R_{p} /\left(P R_{p}\right)=k(P)
$$

What is the induced map on spec?
$\operatorname{spec} k(P)=\{(0)\}$, and the kernel of $R \rightarrow k(P)$ is P. So $\quad\{(0)\} \mapsto P$.

Theorem: let $\varphi: R \rightarrow S$ be a ring map and
$f:$ Spec $S \rightarrow$ Spec R the induced map on spec. For each $P \in S p e c R$, there is a natural bijection between the fiber $f^{-1}(P) \subseteq \operatorname{Spec} S$ and $\operatorname{Spec}\left(k(P) \otimes_{R} S\right)$.

Pf: First note that $f^{-1}(P)=\left\{Q \in S \operatorname{pec} S \mid \varphi^{-1}(Q)=P\right\}$.

Let $U=\varphi(R \backslash P) \subseteq S$. U is a multiplicative set since $R \backslash P$ is: $\quad \varphi(a) \varphi(b)=\varphi(a b)$.

Recall that we have the following homeomorphism:

$$
\begin{align*}
& \operatorname{spec}\left(u^{-1} S\right) \longrightarrow\{Q \in \operatorname{specs} \mid Q \cap u=\phi\} \\
& Q\left(u^{-1} s\right) \longleftrightarrow Q
\end{align*}
$$

Notice: $Q \cap U=\phi \Longleftrightarrow \varphi^{-1}(Q) \subseteq P$, so $f^{-1}(P)$ is contained in

For $Q \in f^{-1}(P)$, we need $P \subseteq \varphi^{-1}(Q)$ as well.

$$
P \subseteq \varphi^{-1}(Q) \Leftrightarrow \varphi(P) \subseteq Q \Leftrightarrow P S \subseteq Q \Leftrightarrow P\left(u^{-1} s\right) \subseteq Q\left(u^{-1} s\right)
$$

So $f^{-1}(P) \cong V\left(P\left(u^{-1} s\right)\right) \subseteq \operatorname{Spec}\left(u^{-1} s\right)$. Which is homeomorphic to $\operatorname{Spec}\left(u^{-1} s / \mathrm{Pu}^{-1} s\right)$.

Thus, we just need $u^{-1} S / P u^{-1} S \cong R_{p} / P R_{p} \otimes S$

We know that $R_{P} \otimes_{R} S \rightarrow U^{-1} S$ is an isomorphism.

Censoring the SES

$$
0 \rightarrow P R_{p} \longrightarrow R_{p} \longrightarrow R_{p} / P R_{p} \longrightarrow 0
$$

yields

$$
\begin{aligned}
P R_{p} \otimes S \xrightarrow{\alpha} & R_{p} \otimes S \longrightarrow R_{p} \not P_{R_{p}} \otimes S \rightarrow 0 \\
& U^{-1} S
\end{aligned}
$$

The image of α is generated by elts of the form $\frac{p}{v} \otimes s$, for $p \in P, v \notin P, s \in S$.

These correspond to els of $U^{-1} s$ of the form $\frac{\varphi(p) S}{u}$, Where $u \in \varphi(R \backslash P)=U$, which generate $P U^{-1} S$.

Thus, we get desired isomorphism. D

So we now have a nice way to describe fibers.

Ex: If $\mathbb{C}[x] \hookrightarrow \mathbb{C}[x, y]$ is the inclusion, and f The induced map on Spec, what does the fiber over $P \in \operatorname{spec} \mathbb{C}[x]$ look like?

If $P=(x-a), \quad k(P)=\left(\mathbb{C}[x] p / P_{p}\right) \cong \mathbb{C}[x] /(x-a)$
S. $\mathbb{C}[x, y] \mathbb{\otimes} \mathbb{C}[x] k(P) \cong \mathbb{C}[x, y] \otimes_{\mathbb{C}(x)}^{\mathbb{C}}[x] /(x-a)$

$$
\cong \mathbb{C}[x, y] /(x-a) \cong \mathbb{C}[y]
$$

If $P=(0), \quad k(0)=\mathbb{C}[x](0) /(0)=$ field of fractions of $\mathbb{C}[x]$
So $\mathbb{C}[x, y] \otimes_{\mathbb{C}[x]} k(0)$

$$
\cong \underbrace{\mathbb{C}(x)}_{\substack{\text { field of } \\ \text { factions } \\ \text { of } C(x)}}[y]
$$

Ex: Consider $\varphi: \mathbb{C}[x] \longrightarrow \mathbb{C}[x, y] /\left(y^{2}-x\right)$, the inclusion, and f the induced map on spec.

Then if $P=(x-a)$, we have

$$
\begin{aligned}
& \mathbb{C}[x, y] /\left(y^{2}-x\right) \\
\mathbb{C}[x] & \mathbb{C}[x] /(x-a) \\
\cong & \mathbb{C}[x, y] /\left(y^{2}-x, x-a\right)
\end{aligned}
$$

$$
\operatorname{Spec} \mathbb{C}[y] /\left(y^{2}-a\right)=\{(y-a),(y+a)\} \text { if } a \neq 0
$$

$$
\text { or }\{(y)\} \text { if } a=0
$$

If $P=(0)$,

$$
\mathbb{C}[x, y] /\left(y^{2}-x\right) \mathbb{Q}_{\mathbb{C}[x]} \mathbb{C}[x]_{(0)}
$$

The only prime ideal in $\mathbb{C}[x, y]$ thant contains $\left(y^{2}-x\right)$ but doesn't meet $\mathbb{C}[x]$ is $\left(y^{2}-x\right)$ itself.

So spec of this ring is a single point.

Ex: f: $\operatorname{spec} \mathbb{Q} \rightarrow S_{p e c} \pi$ has fiber over (0):

$$
\operatorname{spec}(\underbrace{\mathbb{Q} \otimes_{\pi} \pi_{(0)}}_{\mathbb{Q}})=\text { one point }
$$

over $(p), \operatorname{spec}(\underbrace{Q \otimes \pi /(p)}_{0})=\varnothing$.

